
Hybrid AdaBoost Classifiers for the Detection of PHP Webshells

Alexandre Croix
Research Unit Cyber Defense

Royal Military Academy
Brussels, Belgium
a.croix@cylab.be

Thibault Debatty
Research Unit Cyber Defense

Royal Military Academy
Brussels, Belgium
t.debatty@cylab.be

Wim Mees
Research Unit Cyber Defense

Royal Military Academy
Brussels, Belgium
w.mees@cylab.be

Louis Detry

UMons
Mons, Belgium

louis.detry@gmail.com

Abstract—In this work, we trained, measure and compare
the efficiency of several classifiers: k-Nearest Neighbours, Multi-
Layer Perceptron, Support Vector Machines and Decision Trees.
We perform a complete parametric study on these classifiers
to determine their optimal parameters in order to optimize
their performance. The classifiers were trained and tested on
a dataset made of PHP files previously analyzed by a multi-
agents PHP webshells detector developed at the Royal Military
Academy. Based on these well-known classifiers, we built several
versions of AdaBoost algorithms to compare its performance with
single optimized classifiers on different criteria: Area under the
Curve of a Receiver Operating Characteristics curve, the Area
Under the Curve of a Precision-Recall curve and F-Measure.
We globally obtained good results, particularly with the Multi-
Layer Perceptron. Despite good results, the AdaBoost approach
underperforms some of the single-optimized classifiers.

Index Terms—Decision Tree, KNN, Webshells, MLP, SVM,
AdaBoost

I. INTRODUCTION

Cyber-security has become a critical issue in today’s digital
age, with a growing number of cyber-attacks reported daily.
From identity theft to data breaches, the threat landscape is
constantly evolving, and organizations must be proactive in
defending against these attacks. One crucial aspect of cyber-
security is identifying potential threats and taking appropriate
action to prevent them. This is where machine learning algo-
rithms can play a crucial role. These algorithms can classify
an event as a threat or not. They can use them to help a
human analyst by presenting the elements having the highest
probability of being a risk.

Using machine learning in cyber-security is sometimes
tricky because of the lack of reliable data. Indeed, it is
difficult to obtain a large amount of actual malware, APT,
and webshells;... Generating artificial data or creating new
instances based on existing data is a challenge compared to
other data types, such as images.

In this paper, with present and perform a parametric study
on several machine learning algorithms to compare their per-
formance. These algorithms are Decision Tree (DT), k-Nearest
Neighbor (KNN), Multi-Layer Perceptron (MLP) and Support
Vector Machine (SVM). Then, we built a hybrid Adaptative
Boosting algorithm that combines the four previous classifiers
in several configurations.

These classifiers were evaluated on a specific task: clas-
sifying PHP files as webshells or harmless files. Before the
classification itself, all the PHP files go through a Webshell
detector. This detector is composed of 5 specific agents that
produce a score between 0 and 1. These values are used as
input for the different classifiers.

The rest of the paper is arranged as follows: Section (II)
will give a basic description and explain the working of these
classifiers. Then, Section (III) presents the structure of our
hybrid Adaptative Boosting algorithm. In Section (IV), we
evaluate the performance of these classifiers by studying the
impact of several parameters on the classification. We finish
in Section (V) by discussing a potential direction for future
works.

II. CLASSIFIERS

In this Section, we will describe the principle and the
structure of all the basic classifiers used in this work: Decision
Tree, k-Nearest Neighbor, Multi-Layer Perceptron and Support
Vector Machine.

A. k-Nearest Neighbors

The k-Nearest Neighbor (KNN) is a cluster-based classifi-
cation algorithm. That means there is no learning step [1], [2].
The algorithm tries to classify new entries into a cluster by
comparing it with close neighbours. This method considers an
element with similar properties to other elements close to the
data space. Another hypothesis is that ”normal” elements are
located in a dense neighbourhood, and ”abnormal” instances
are far away from their closest neighbours.

To measure the similarity between data, we use a distance
function. The most used function is the euclidean distance:

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2 (1)

Where:
• xk is the kth properties of x;
• yk is the kth properties of y;
The algorithm aims to find the K nearest neighbours of x

in the data space. Then, the new element x is classified in a

STO-MP-IST-200-03 3 - 1

class if most of the K’s nearest neighbours are in this same
class.

KNN does not use labelled data; it can be considered
unsupervised learning.

The value of K is an important hyperparameter in KNN. It
determines how many neighbours to consider when making
predictions. A larger value of k means that the prediction
will be based on a larger number of neighbours, which can
lead to a smoother decision boundary but may also result
in poorer accuracy. On the other hand, a smaller value of k
means that the prediction will be based on a smaller number
of neighbours, which can result in a more complex decision
boundary but may also lead to overfitting.

B. Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is an Artificial Neural
Network composed of several layers. An Artificial Neural
Network is a computing system inspired by a human brain.
It is built of several nodes connected to each other to make
a network. Fig. (1) represents a typical MLP structure. There
are three kinds of nodes:

• Input nodes
• Hidden nodes
• Output nodes

Fig. 1. Representation of an MLP

A node receives a signal, processes it, and can transmit
the result to other connected nodes. Coefficients weigh the
transmitted signals. The weighted signals are added as input
by the neurons, and the node produces a result following an
activation function based on this sum. This activation function
can be compared to a logic gate. It determines if the node
must be activated or not. There are several different activation
functions. The most used are ReLu, Sigmoid, Linear function,
and tanh [3]. They are represented in Fig. (2).

The MLP can learn from incomplete, noisy or limited data.
But they are sensitive to the number of input characteristics
[4]. The more input characteristics, the more time the network
needs to learn.

Fig. 2. Curves and equations of typical activation functions

C. Support Vector Machine

The Support Vector Machine (SVM) is based on the concept
of margin and finding a separating hyperplane in the feature
space between two classes [1]. The goal is to maximize
the distance (called margin) between the hyperplane and the
closest data points from each class.

The points on the margin are called support vectors, and
the solution is based on their linear combination. Fig. (3). This
approach is risk minimization instead of optimal classification.

Fig. 3. 2D SVM representation

When it is impossible to separate points using a linear plane,
SVMs use kernel functions ϕ to transpose them on higher-

3 - 2 STO-MP-IST-200-03

HYBRID ADABOOST CLASSIFIERS
FOR THE DETECTION OF PHP WEBSHELLS

dimension spaces [5]. Fig. (4). Indeed, using a non-linear
kernel produce a bad classification.

SVM is very efficient to generalize and useful when the
number of characteristics is high and the number of data
elements is low.

Fig. 4. Data transformation to a higher dimensions space

D. Decision Trees

A Decision Tree (DT) is a classifier that classifies data based
on a decision sequence. These decisions are presented in a
tree structure Fig. (5). Each root node or intermediate node
represents an attribute, and each branch going down from this
node represents the possible values this attribute can have. The
leaves represent the classification categories.

Fig. 5. Representation of a DT

There are several DT algorithms; we used the C4.5 algo-
rithm in this paper [2]. It has the specificity that the chosen
attribute has the highest information gain at each node.

III. HYBRID ADAPTATIVE BOOSTING ALGORITHM

Our algorithm is a specific version of the AdaBoost [6], [7]
algorithm and is a Boosting algorithm. A Boosting algorithm is
based on combining several classifiers called weaklearners to
build a robust classifier that improves the weak learners’ per-
formance. AdaBoost is an iterative process using errors made
by a weak learner to improve the efficiency of the following
weak learner. The idea behind AdaBoost is to iteratively re-
weight the training examples so that the next weak classifier
focuses more on the examples that were misclassified by the
previous weak classifiers. Fig. (6) represents the first weak
learner (all data have the same weight). Fig. (7) represents the
second weak learner where misclassified data have a higher
weight.

Fig. 6. AdaBoost first weak learner representation

Fig. 7. AdaBoost second weak learner representation

Using this technic, the ht+1 weak learner will focus more
on the areas in which the ht learner was terrible.

A. Hybrid AdaBoost steps

This subsection describes in more details the different steps
of the AdaBoost algorithm.

The first step is the attribute an initial weight to all elements
in the training dataset:

w0(xi) =
1

n
(2)

where n is the number of elements in the training dataset.
Then, a classifier (ht) is trained on the whole training

dataset before computing the weighted error. The computation
of this error is done with the following equation:

ϵt =
n∑

i=1

wt(xi)[ht(xi) ̸= yi] (3)

yi is the label of the data element i.

STO-MP-IST-200-03 3 - 3

HYBRID ADABOOST CLASSIFIERS
FOR THE DETECTION OF PHP WEBSHELLS

During the third step, the current model is assigned a weight
useful for predicting new instances. This value is computed by
using (4)

αt =
1

2
ln(

1− ϵt
ϵt

) (4)

Finally, the weight of each element in the training dataset
is updated before going to the next classifier. Indeed, as previ-
ously explained, the AdaBoost algorithm pays more attention,
step by step, to the data element misclassified. The weight
update is given by (5)

wt+1(xi) =
wt(xi)

Zt
∗ e−αt∗yi∗ht(xi) (5)

where

Zt =
n∑

i=1

wt(xi) ∗ e−αt∗yi∗ht(xi) (6)

Zt is a normalization factor used to ensure that the in-
stances’ weights follow a probability distribution.

After this update, the process is repeated on the next weak
learner (ht+1) beginning at the second step (classifier training)
until all the weak learners are trained.

Each classifier is associated with a weight α to evaluate
the method’s performance on new data (testing data). Each
classifier computes a prediction for the new data element (xj).
Because we are in a binary situation, the prediction can be −1
or 1. Each prediction is then weighted thanks to the learner
corresponding α. All these weighted values are summed to
determine the final prediction. This prediction can be written
as follow:

H(x) = sign(
T∑

t=1

αt ∗ ht(x)) (7)

AdaBoost usually works with Decision Tree as a weak
learner. In our paper, we used the different algorithms pre-
viously described in this paper: Decision Tree, k-Nearest
Neighbours, Multi-Layer Perceptron and Support Machine
Vector.

IV. PARAMETRIC STUDY

This section presents the parametric study we performed
on each classifier. The goal was to determine the parameters
combination producing the best result for each learner. For
this work, we used a training dataset of 23,415 PHP files
containing 1,833 webshells. As mentioned earlier, these files
had gone through a webshell detector with 5 agents. Each
produces a value between 0 and 1 which is the probability this
file is a webshell based on this specific criteria. The different
agents of the detector are [8]:

• Signature: Based on file portion (usually malicious part)
which can be used to identify it, or a similar one. If
the file has been modified, the signature agent could not
detect the file as malicious.

• Fuzzy Hashing: identify files that are similar to each
other, even if they are not exact copies. It works by
generating a fingerprint of a file that takes into account
small variations and then comparing this fingerprint to
the fingerprints of other files.

• Dangerous routines: mechanism checks if a PHP file
uses some dangerous routines (passthru, system).

• Obfuscation: mechanism checks if the file uses
non-ASCII characters, obfuscation functions
(base64decode,...).

• Entropy: mechanism checks if a signal is expected or
not. An unexpected signal may be significant, whereas
an expected signal might be overlooked among a large
number of similar signals.

We use a k-fold cross-validation method to evaluate the
performance. The dataset is separated into k folds containing
the same proportion of webshells. Training is done on k − 1
folds and the testing is on the last one. This process is repeated
k times with a different testing fold each time. The final result
is the mean of all these intermediate results.

A. Performance evaluation criteria

The performance of a classifier is evaluated thanks to three
statistical criteria:

• AUC-ROC: ROC is a graphical tool that illustrates the
ability of a binary classifier by varying its discrimination
threshold. The chart is built by plotting the true positive
rate on x and the false positive rate on y. The AUC-ROC
is the Area Under the Curve of a ROC. The closer to 1
the AUC is, the better the classifier.

• AUC-PR: Similar to AUC-ROC with a chart using Pre-
cision on x axis and Recall on y axis. This tool is more
informative for an unbalanced dataset.

• F-Measure: metric that combines precision and recall.
The closer to 1 the result is, the better the classifier.

During all our experimentation, we made the assumption the
parameters are non-correlated (probably not perfectly correct).
That allows us to test all parameters independently. We fixed
all parameters to a specific value (generally based on what
we have seen in the literature), and we varied the last one
to identify the best value for this parameter. This process is
repeated for each parameter of a classifier to determine the best
parameters combination. Without this assumption, we should
have tested all possible parameters combination, difficult in
practice.

B. k-Nearest Neighbours parametric study

The first algorithm we studied is the KNN classifier. We
consider 2 parameters in our parametric study:

• k: the number of neighbours used to classify the new
element.

• Distance type: the method used to compute distance. We
tested several methods: Euclidean, Chebyshev, Jansen-
Shannon, Manhattan, Minkowski and correlation. In the
case of using Minkwoski distance, an additional p param-
eter is required: the distance order.

3 - 4

HYBRID ADABOOST CLASSIFIERS
FOR THE DETECTION OF PHP WEBSHELLS

STO-MP-IST-200-03

To test the parameter k, we used the Euclidean distance
as a fixed parameter and we varied k between 1 and 350.
The results are in Fig. (8). The AUC-ROC and AUC-PR
values stabilized around k = 50 with an AUC-ROC around
0.925. After this threshold, the computation time becomes
more important for a negligible improvement.

Fig. 8. Effect of Parameter k on AUC-ROC and AUC-PR. Fixed parameters:
Distance: Euclidean

The distance computation method was tested with a k
parameter fixed to 3. In Fig. (9) we observed a small improve-
ment in AUC-PR with the Correlation method. This method
is defined as [9]

Correlation(X,Y) =
sx,y

sx ∗ sy
(8)

where sx,y is the covariance between X and Y:

sx,y =
1

n− 1

n∑
i=1

(xi − x)(yi − y) (9)

and sx and sy are the standard deviation of X and Y.
The reason for the better results obtained with correlation

probably lies in the fact that the calculation is based on the
covariance between different features of the data. In contrast,
for other distance measures, only the pairwise correspondence
between different features is taken into account.

Fig. 9. Effect of distance computation method on AUC-ROC and AUC-PR.
Fixed parameters: K: 3

Table (I) resumes the best value for each parameter with the
associated AUC-ROC, AUC-PR and F-Measure.

The result obtained by combining the 2 optimal parameter
values is less good than k = 50 and the Euclidean distance

TABLE I
KNN ALGORITHM PARAMETER VALUES PRODUCING BEST RESULTS

DURING PARAMETRIC STUDY

Parameter Value AUC-ROC AUC-PR F-Measure
k 50 0,92473 0,800405 0,70488
Distance Correlation 0,86963 0,51815 0,55901

combination. The phenomenon can be attributed, in part, to the
fact that the assumption that all parameters are independent of
each other, which is made a priori, is likely to be incorrect.

C. Multi-Layer Perceptron parametric study

In this work, we used a very simple MLP architecture.
The network contains only a single hidden layer with several
neurons. An Artificial Neural Network has more parameters
than the previous KNN algorithm. The set of these parameters
is often called Hyperparameters. In our study we considered:

• Activation function: a function that introduces non-
linearity into the output of a neuron. It determines
whether a neuron should be activated or not based on the
input signal it receives. The neuron’s inputs are weighted
and summed to be used as parameters for the activation
function. In our work, we consider tanh, ReLu, sigmoid
and a linear function. See Fig (2)

• Neurons number: the number of neurons in the hidden
layer. Intuitively, we can think more neurons on the
hidden layer produce a better result. In practice, too many
neurons can lead to over-fitting.

• Learning rate: parameter that determines the step size or
rate at which the model learns from the training data. It
controls how much to adjust the model in response to the
error calculated during training. A high learning rate may
cause the model to overshoot the optimal solution, while
a low learning rate may cause the model to converge
slowly or get stuck in local minima.

• Epochs number: the number of times the algorithm will
iterate over the entire dataset during training. Setting the
right number of epochs is important as it affects the
model’s ability to generalize to new data. Too few epochs
may result in underfitting, while too many epochs may
lead to overfitting.

• Batch size: number of dataset elements processed by the
network before updating its weights.

This parametric study was already treated in previous work
[10]. But due to some technical limitations (the model was
running in Google Colab), we were not able to test the
complete range for all parameters initially planned. In this
paper, we will only discuss the parameters whose value has
changed because we are able to test our models on new values
that were previously inaccessible to us. Table (II) contains the
default parameter values used for our parametric study. These
values were obtained from our previous work [10].

Our previous work tested the epoch number parameter
between 100 and 350. It was not possible to run with values
bigger than 350. This time, we tested this parameter from 350

STO-MP-IST-200-03 3 - 5

HYBRID ADABOOST CLASSIFIERS
FOR THE DETECTION OF PHP WEBSHELLS

TABLE II
DEFAULT PARAMETER VALUES USED IN PARAMETRIC STUDY

Parameter Value
Neurons number 38
Learning rate 0.04
Batch size 2000
Epoch number 350
Activation function ReLu

to 700. Fig. (10). We consider 350 as the optimal value for the
rest of the paper. A higher epochs number value has a very
small influence on AUC-ROC and AUC-PR for a computation
time much higher.

Fig. 10. Effect of Parameter epochs number on AUC-ROC and AUC-PR.
Fixed parameters: Neurons number: 38 - Learning rate: 0.04 - Batch size:
2000 - Activation function: ReLu

The second parameter for which we were limited in our
previous work is the batch size. We tested it from 1000 to
2000. This time, we varied the value from 2000 to 10.000. Fig.
(11). The AUC-ROC and AUC-PR values decrease for a batch
size bigger than 2000. The optimal value for the parameter
batch size is 2000.

Fig. 11. Effect of Parameter batch size on AUC-ROC and AUC-PR. Fixed
parameters: Neurons number: 38 - Learning rate: 0.04 - Epochs number: 350
- Activation function: ReLu

The set of optimal parameters is actually the optimal pa-
rameters computed in our last work and performance results
are in Table (III).

We build a model using all these optimal parameters as hy-
perparameters. The combination of all the optimal parameters
allows for obtaining excellent results, which are even better
than those obtained through the various tests, as evidenced by
Table (IV).

TABLE III
MLP PARAMETER VALUES PRODUCING BEST RESULTS DURING

PARAMETRIC STUDY

Parameter Value AUC-ROC AUC-PR
Neuron number 38 0,92473 0,80040
Learning rate 0.04 0,86963 0,51815
Batch size 2000 0.94963 0.84261
Epochs number 350 0.94957 0.84405
Activation function ReLu 0.94989 0.83951

TABLE IV
PERFORMANCE INDICATORS WITH OPTIMAL PARAMETERS COMBINATION:

NEURON NUMBER: 38 - LEARNING RATE: 0.04 - BATCH SIZE: 2000 -
EPOCHS NUMBER: 350 - ACTIVATION FUNCTION: RELU

Criteria Value
AUC-ROC 0.95753
AUC-PR 0.85940
F-Measure 0.79676

D. Support Vector Machine parametric study

As for the previous algorithms, we carried out a complete
parametric study. The SVMs we tested have two specific
parameters:

• C: corresponds to the cost of misclassification and deter-
mines how much the model should adjust to the training
data. A higher value of C will lead to greater adaptation
to the training data, but may also increase the risk of
overfitting.

• Kernel: function used to transpose elements into a higher
dimensional space. We tested two different kernel types:
Laplacian and polynomial.

The kernel functions have their own specific parameters:
• Sigma (σ): specifies the non-linearity of the kernel func-

tion. The bigger σ will be, the more linear the decision
will be. It is associated with Laplacian kernel

• Polynomial degree: associated with polynomial kernel.
Our parametric study can be divided into two sub-studies:

one for Laplacian kernels, and the second for polynomial
kernels.

1) Laplacian kernels: We tested the C parameter from
0.001 to 1000 with a σ value fixed to 0.1. Fig. (12) shows
us the optimal value is somewhere between 10 and 200. But
is difficult to be more accurate. The second test on Fig. (13)
gives us 100 as the optimal value for C.

Just as for the determination of the optimal C parameter,
the search for sigma required several attempts. Fig. (14) shows
quite clearly a maximum around σ = 0.1. The second, Fig.
(15) is less explicit but the value of 0.06 gives better results.

Table (V) contains the best parameter values and the asso-
ciated performance indicator.

We combined the optimal parameters and obtained better
results. These results are shown in Table (VI)

2) Polynomial kernels: For polynomial kernels, we varied
the polynomial degree from 1 to 10 with C fixed to 3. Fig.
(16) shows the AUC indicator seems to reach a maximum
when the degree is 3, while for the AUC-PR indicator, the

3 - 6

HYBRID ADABOOST CLASSIFIERS
FOR THE DETECTION OF PHP WEBSHELLS

STO-MP-IST-200-03

Fig. 12. Test 1 - Effect of Parameter C on AUC-ROC and AUC-PR. Fixed
parameters: σ: 0.1

Fig. 13. Test 2 - Effect of Parameter C on AUC-ROC and AUC-PR. Fixed
parameters: σ: 0.1

Fig. 14. Test 1 - Effect of Parameter σ on AUC-ROC and AUC-PR. Fixed
parameters: C: 10

Fig. 15. Test 2 - Effect of Parameter σ on AUC-ROC and AUC-PR. Fixed
parameters: C: 10

TABLE V
SVM LAPLACIAN ALGORITHM PARAMETER VALUES PRODUCING BEST

RESULTS DURING PARAMETRIC STUDY

Parameter Value AUC-ROC AUC-PR F-Measure
C 100 0,87914 0,59422 0,74021
σ 0.06 0,88023 0,59879 0,74343

TABLE VI
PERFORMANCE INDICATORS WITH OPTIMAL PARAMETERS COMBINATION

FOR SVM LAPLACIAN: C: 100 - σ: 0.06

Criteria Value
AUC-ROC 0,84320
AUC-PR 0,61470
F-Measure 0,73899

more the degree increases, the more its value increases (0.55
for degree 3 to 0.62 for degree 10). The F-Measure follows
the same trend as AUC-PR with an increase strongest between
degrees 1 and 3 (from 0.63 to almost 0.7). This tendency would
push us to take a degree as high as possible. The problem
that can result from a (too) high degree is a longer learning
time and possible over-learning. The choice of degree 5 seems
to be a good compromise with satisfactory performance, the
dimension of the data being also 5.

Fig. 16. Effect of Parameter polynomial degree on AUC-ROC and AUC-PR.
Fixed parameters: C: 10

As for the Laplacian kernels, determining the optimal value
of the parameter C required several attempts. With the first
test on Fig. (17), we identify a working area of around 0.1. In
the second test on Fig. (18), we can distinguish a really small
maximum at 0.15.

Table (VII) contains the best parameter values and the
associated performance indicator and Table (VIII) contains the
result obtained for the model combining all the optimal param-
eters on polynomial kernels. We noted that the combination of
optimal parameters gives less good results than some of the
independent tests. It is likely because of our assumption of
complete non-correlation between parameters.

We obtain better results with SVM using a Laplacian kernel.

E. Decision Tree parametric study

The last tested algorithm was the Decision Trees. This clas-
sifier is usually the weaklearner used in AdaBoost algorithm.

STO-MP-IST-200-03 3 - 7

HYBRID ADABOOST CLASSIFIERS
FOR THE DETECTION OF PHP WEBSHELLS

Fig. 17. Effect of Parameter C on AUC-ROC and AUC-PR. Fixed parameters:
Polynomial degree: 5

Fig. 18. Effect of Parameter C on AUC-ROC and AUC-PR. Fixed parameters:
Polynomial degree: 5

Depending on the algorithm, DT can use several parameters.
In our work we studied:

• Pruning: process of removing certain nodes or branches
from the tree to improve its accuracy and reduce over-
fitting. If true, pruning requires an additional parameter
C: confidence factor. It specifies the minimum level of
confidence required for a branch to be pruned. A value
close to 1 is a more aggressive pruning.

• Instance number: defines the minimal number of in-
stances by leaf. It is the minimum number of training
instances required to form a leaf node.

• Leaf separation: leaf separation are exclusively binary
or not.

TABLE VII
SVM POLYNOMIAL ALGORITHM PARAMETER VALUES PRODUCING BEST

RESULTS DURING PARAMETRIC STUDY

Parameter Value AUC-ROC AUC-PR F-Measure
C 0.15 0,81672 0,60340 0,71767
Polynomial degree 5 0,81724 0,56838 0,69971

TABLE VIII
PERFORMANCE INDICATORS WITH OPTIMAL PARAMETERS COMBINATION
FOR SVM POLYNOMIAL ALGORITHM: C: 0.15 - POLYNOMIAL DEGREE: 5

Criteria Value
AUC-ROC 0,77446
AUC-PR 0,63499
F-Measure 0,69455

We varied the parameter C from 0 to 1 to determine its
optimal value. Results are in Fig. (19). We observe better a
result with C = 0.6. We also tried with non-pruned trees and
obtained even better results.

Fig. 19. Effect of Parameter C on AUC-ROC and AUC-PR. Parameters:
pruning: true - Instance number: 2 - Separation leaf: non-binary

The second tested parameter was the minimal number of
instances by leaf. The value varied from 2 to 100 and we
obtained Fig. (20). We note a small maximum for the value
6.

Fig. 20. Effect of Parameter Instance number on AUC-ROC and AUC-PR.
Fixed parameters: pruning: true - C: 0.25 - Separation leaf: non-binary

We finally test if a DT gives better results if the leaf
separation is exclusively binary or not. We obtained results a
bit better with binary separation. Table (IX) summarizes all the
optimal parameters and their associated AUC-ROC, AUC-PR
and F-Measure. Table (X) contains the performance indicators
for a Decision Tree combining all the optimal parameters. The
result is better than during our previous tests.

TABLE IX
DECISION TREE ALGORITHM PARAMETER VALUES PRODUCING BEST

RESULTS DURING PARAMETRIC STUDY

Parameter Value AUC-ROC AUC-PR F-Measure
Pruning False 0,91499 0,78353 0,76806
Minimal instances 6 0,88269 0,78693 0,76102
Leaf separation Binary 0,87058 0,75851 0,76228

F. AdaBoost Algorithm parametric study

Our last subsection is about a AdaBoost Algorithm com-
posed of the four previously discussed classifiers.

We observed the influence of two main characteristics:
• Classifier order: the order in which the ”weak” algo-

rithms are used. Because of the structure of the AdaBoost

3 - 8

HYBRID ADABOOST CLASSIFIERS
FOR THE DETECTION OF PHP WEBSHELLS

STO-MP-IST-200-03

TABLE X
PERFORMANCE INDICATORS WITH OPTIMAL PARAMETERS COMBINATION

FOR DECISION TREE ALGORITHM: PRUNING: FALSE - MINIMAL
INSTANCES: 6 - LEAF SEPARATION: BINARY

Criteria Value
AUC-ROC 0,91181
AUC-PR 0,80257
F-Measure 0,76723

algorithm we use, the order of its components has an
influence on the final result. Indeed, during step t + 1,
the dataset elements are weighted according to the per-
formance of the classifier in step t.

• Optimal parameters: the usage (or not) of the optimal
parameters we determined during all this work. In the
literature, AdaBoost uses weaklearner. It is interesting to
test the performance of a Boosting algorithm made of
several non-optimal classifiers.

1) Optimal Parameters: In this first test pool, we use a
AdaBoost algorithm made of 4 classifiers: SVM, KNN, DT
and MLP. As in previous tests, cross-validation was used. The
results obtained vary quite significantly depending on the order
in which the different models are considered. The order [SVM,
MLP, KNN, DT] gives results in Table (XI) that are quite bad.
Table (XII) shows the results for the order [MLP, SVM, KNN,
DT] that is the best combination.

TABLE XI
PERFORMANCE INDICATORS FOR [SVM, MLP, KNN, DT] ADABOOST

ALGORITHM WITH OPTIMAL PARAMETERS

Criteria Value
AUC-ROC 0,43428
AUC-PR 0,05245
F-Measure 0,11601

TABLE XII
PERFORMANCE INDICATORS FOR [MLP, SVM, KNN, DT] ADABOOST

ALGORITHM WITH OPTIMAL PARAMETERS

Criteria Value
AUC-ROC 0,85635
AUC-PR 0,53897
F-Measure 0,69785

We also tried to combine several times the same classifier
to build a new AdaBoost classifier. In the literature, AdaBoost
is used with multiple Decision Trees as weaklearners [6].
We obtain the best result with an association of 4 SVM as
mentioned in Table(XIII). The results are just lower than the
best combination we made previously. The number 4 was
chosen because the previous tests were done with 4 different
classifiers.

2) Non optimal parameters: We perform the same analysis
as with the optimal parameters but the classifiers are used
without the optimal parameters. This analysis does not show a
specific improvement or degradation of the result. Table (XIV)
contains results for the best combination [KNN, DT, SVM,
MLP]. We note the best combination with optimal parameters

TABLE XIII
PERFORMANCE INDICATORS FOR [SVM, SVM, SVM, SVM] ADABOOST

ALGORITHM WITH OPTIMAL PARAMETERS

Criteria Value
AUC-ROC 0,83529
AUC-PR 0,59793
F-Measure 0,72365

([MLP, SVM, KNN, DT]) is the 18th position in the list of
results with non-optimal parameters with an AUC-ROC of
0.56604.

TABLE XIV
PERFORMANCE INDICATORS FOR [KNN, DT, SVM, MLP] ADABOOST

ALGORITHM WITH NON-OPTIMAL PARAMETERS

Criteria Value
AUC-ROC 0,83965
AUC-PR 0,66418
F-Measure 0,76233

Our last analysis is the combination of 4 times the same
classifier used without their optimal parameters. The best
results are shown in Table (XV) and are obtained with [KNN,
KNN, KNN, KNN] which was the worst combination with op-
timal parameters. And the worst with non-optimal parameters
is [SVM, SVM, SVM, SVM] which was the best using optimal
parameters. It is difficult to explain this result. One possible
explanation is that KNNs are quite stable against resampling
[11].

TABLE XV
PERFORMANCE INDICATORS FOR [KNN, KNN, KNN, KNN] ADABOOST

ALGORITHM WITH NON-OPTIMAL PARAMETERS

Criteria Value
AUC-ROC 0,80322
AUC-PR 0,45770
F-Measure 0,62280

Globally, combinations of several times the same classifier
produce really bad results. Except for the values shown in
this paper, all the other results are around or even above the
random classifier value (AUC-ROC = 0.5).

V. CONCLUSION AND PERSPECTIVES

In this work, we tried to show to what extent a AdaBoost
algorithm is more efficient or not than other more classical
Machine Learning classifiers on the task of classifying a
PHP file as a webshell or a harmless file. We performed a
complete parametric study on four well-known classifiers: k-
Nearest Neighbours, Multi-Layer Perceptron, Support Vector
Machines and Decision Trees. We determined their optimal
parameters and measure their individual performance with
three criteria: AUC-ROC, AUC-PR and F-Measure.

The Multi-Layer Perceptron obtain the best result with an
AUC-ROC of 0.95753 in its best configuration. It is important
to note that the Decision Trees produce also quite good
results: AUC−ROC = 0.91181 with a learning time around
350 times shorter than MLPs and KNNs give (at its best

STO-MP-IST-200-03 3 - 9

HYBRID ADABOOST CLASSIFIERS
FOR THE DETECTION OF PHP WEBSHELLS

configuration) AUC − ROC = 0.92473 with a computation
time around 160 times shorter than MLPs.

The individual performance of the classifiers was quite good
in general, but we thought about combining all these systems
into an AdaBoost algorithm. Our goal was to improve the gen-
eral performance of the classification. We used the 4 classifiers
in several combinations and observe no improvements. The
best result obtained by any version of our AdaBoost algorithm
gives less good results than some of the individual classifiers.

The results obtained shed light on certain important ele-
ments regarding the AdaBoost method. As already explained
above, although it involves the combination of several high-
performing classifiers, the combination does not improve the
results obtained individually. This underperformance can be
explained by the fact that most of the combinations were
performed on strong classifiers, or at least classifiers whose
performance cannot be assimilated to weak learners, whereas
in the literature, combinations are always performed on weak
learners.

The result of this work can be consider as disappointing, but
we observe generally good performance for the classification
with singer classifiers. Moreover, we believe that highlighting
something that is not working, is positive for the scientific
community.

Nevertheless, several future perspectives are possible. We
think it could be interesting to test this kind of classifier
on another type of data (APTs, malware,...). In this work,
we limited our tests to AdaBoost algorithm composed of 4
classifiers. We could try more different combinations or an
AdaBoost algorithm with 10, 100 or even 1000 times weak
learners as Decision Trees.

One another perspective for improvement could be to ex-
plore a specific boosting algorithm for KNNs. As mentioned
earlier, KNNs are not very sensitive to an AdaBoost algorithm
[11].

REFERENCES

[1] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion detection
by machine learning: A review,” Expert Systems with Applications,
vol. 36, no. 10, pp. 11 994–12 000, 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417409004801

[2] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A detailed
investigation and analysis of using machine learning techniques for
intrusion detection,” IEEE Communications Surveys Tutorials, vol. 21,
no. 1, pp. 686–728, 2019.

[3] V. Jain. Everything you need to know about “activa-
tion functions” in deep learning models. [Online]. Avail-
able: https://towardsdatascience.com/everything-you-need-to-know-
about-activation-functions-in-deep-learning-models-84ba9f82c253

[4] H. Kim, J. Kim, Y. Kim, I. Kim, and K. Kim, “Design of network
threat detection and classification based on machine learning on cloud
computing,” Cluster Computing, vol. 22, 01 2019.

[5] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commu-
nications Surveys Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

[6] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” Journal of Computer and
System Sciences, vol. 55, no. 1, pp. 119–139, 1997. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S002200009791504X

[7] T. Chengsheng, L. Huacheng, and X. Bing, “Adaboost typical algorithm
and its application research,” MATEC Web of Conferences, vol. 139, p.
00222, 01 2017.

[8] A. Croix, T. Debatty, and W. Mees, “Training a multi-criteria decision
system and application to the detection of php webshells,” pp. 1–8, 2019.

[9] V. Kotu and B. Deshpande, Chapter 4 - Classification, second
edition ed. Morgan Kaufmann, 2019, pp. 65–163. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128147610000046

[10] A. Croix, T. Debatty, and W. Mees, “Comparison of a supervised trained
neural network classifier and a supervised trained aggregation.”

[11] N. Garcı́a-Pedrajas and D. Ortiz-Boyer, “Boosting k-nearest neighbor
classifier by means of input space projection,” Expert Systems with Ap-
plications, vol. 36, no. 7, pp. 10 570–10 582, 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417409002140

3 - 10

HYBRID ADABOOST CLASSIFIERS
FOR THE DETECTION OF PHP WEBSHELLS

STO-MP-IST-200-03

